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Abstract 

The group of diffeomorphisms of a compact manifold acts isometrically on the space of 

Riemannian metrics with its L’ metric. Following Amaudon and Paycha (1995) and Maeda. 
Rosenberg and Tondeur (1993), we define minimal orbits for this action by a zeta function reg- 
ularization. We show that odd dimensional isotropy irreducible homogeneous spaces give rise to 
minimal orbits, the first known examples of minimal submanifolds of infinite dimension and codi- 
mension. We also find a flat 2-torus giving a stable minimal orbit. We prove that isolated orbits are 
minimal, as in finite dimensions. 

Subj. Class.: Differential geometry 
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1. Introduction 

Let X be a Riemannian manifold with an isometric action of a Lie group. If X is finite 
dimensional, it follows from Hsiang’s theorem [7] that orbits of minimal volume among all 
nearby orbits of the same type are in fact minimal submanifolds of X. Gauge theory provides 
an infinite dimensional analogue of this situation, where X is the space of connections on 
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a principal bundle over a compact manifold h4, and the Lie group is the gauge group. In 
[8,14] minimal orbits were defined in this context by a zeta function regularization and 
examples of minimal orbits were given. Zeta functions enter the discussion since in finite 
dimensions the first variation formula computes the variation of the determinant of the metric 
on a submanifold; in infinite dimensions this determinant is formally the determinant of a 
Laplacian-type operator and is defined by Ray-Singer/zeta function regularization. Thus the 
infinite dimensional geometry of the space of connections is related to attempts to quantize 
Yang-Mills theory, since regularized determinants are also a key element of semiclassical 
Yang-Mills theory. 

The regularization actually computes TrN II, the component of the trace of the second 
fundamental form in the direction N; an orbit is minimal if TrN II = 0 for all N. The 
regularization in [ 141 had the disadvantage of being finite only for certain orbits. In [I], a 
term was added to the regularization which guarantees that the new regularized definition of 
Tr,y II is always finite. This counterterm is zero in finite dimensions, so both regularizations 
generalize the usual notion of TrN II. 

In this paper we treat a different physically interesting case of an infinite dimensional 
Riemannian manifold with an isometric action of an infinite dimensional group. Here the 
manifold is M, the space of Riemannian metrics on a fixed compact manifold X, and the 
group V is the space of diffeomorphisms of X. The determinants that appear here should 
relate ultimately to quantum gravity. 

It turns out that the case of Riemannian metrics is technically more difficult to handle than 
the gauge theory case, as here the group carries no natural metric. The resulting Laplacians 
used to define the regularization thus depend on a fixed choice of metric on X, and these non- 
natural Laplacians must be related to the natural Laplacians that have appeared previously 
in discussions of M. The theory also becomes more complicated when orbits of varying 
type occur. The main results are as follows (Theorems 3.1-3.3 and 3.5). 

Theorem 1.1. 
(i) In odd dimensions, the orbit of the volume one G-invariant metric on an isotropy irre- 

ducible homogeneous space G/H is minimal within the space of volume one metrics 
on G/H. 

(ii) The orbits of the Jlat 2-tori of volume one associated to the the points (0, 1) and 
(i, i A) in the upper halfplane are minimal within the space of alljat tori of volume 
one. The orbit associated to (i , i A) is a stable minimal orbit. 

(iii) An orbit of isolated difSeomorphism type is minimal. 

Note that the isotropy irreducible homogeneous spaces include the symmetric spaces, 
but many more examples exist. These spaces are minimal orbits of infinite dimension and 
codimension. Part (iii) is an easy corollary of Hsiang’s theorem in finite dimensions, but is 
non-trivial in infinite dimensions. 

The paper is organized as follows. In Section 2 the first variation formula in finite di- 
mensions is rederived in terms of the zeta function of a finite dimensional transformation 
which is the analogue of the Laplacians appearing in infinite dimensions. This serves as 
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motivation for the later sections. We also discuss the effect of varying the metric on the 
submanifold. which is an unnecessary complication in finite dimensions but is forced upon 
us in infinite dimensions. 

In Section 3 we handle the case of M. Section 3.1 gives the general theory in inn- 
nite dimensions, Section 3.2 computes minimal orbits of flat 2-tori, Section 3.3 treats the 
case of orbits of varying type and discusses isotropy irreducible homogeneous spaces, and 
Section 3.4 gathers some local computations of the Laplacians used. 

2. The finite dimensional case 

In this section we rederive the first variation formula for an immersed submanifold M of 
a Riemannian manifold (a, S) in terms of the eigenvalues of a finite dimensional operator. 
Each step in this calculation has counterparts in the usual derivation (cf. [ 12, Ch. I]). 
Afterwards, we modify the first variation formula to motivate some calculations in infinite 
dimensions. 

Let i : M -+ ?@ be the immersion and set L = L,Y = di., : T,M -+ q,,,M. We tix a 
Riemannian metric R on M. To be consistent with the notation in the rest of the paper, we 
set x = a, = L*L : T,M + T,M. (To be strictly consistent, we should relabel L* as 
z*.) There exists an orthonormal basis (4;) of T, M consisting of eigenfunctions of 2. i.e. 
A& = h;@i. Since i is an immersion, h; > 0. If we let Xi = L4;/&, then (X;) is an 
orthonormal basis of T;(,)i(M). For a fixed x E M, we may extend (&) near x so that 
A,4i (y) = h; (y)@i (y) for all y in the neighbourhood I/ of x. 

Take a variation F : M x (--E. c) + z with variation vector field N, = dF(,,o)(&), 
where u is the parameter for (-c, E). We assume N I i(M). (Strictly speaking, N E 
T(i*TM), but near x we may write N E r(TM).) Let X” denote the projection of a vector 
X E TM into the normal bundle to di (T M) (which is locally defined) in T;i?. Then TrN II, 
the component of the trace of the second fundamental form at x in the direction of N = N,. 
is by definition 

TrN II = ((VX, Xi)“, N)x, 

where V is the Levi-Civita connection on z and we are using summation convention. Here 
we omit mentioning the point x in TrN II. Using (X, N) = 0, we get 

Tr,vII= (Vx,Xi, N) = -(Xi, Vx,N) 

Here and from now on all inner products are with respect to S unless otherwise noted. 
We now extend $i, N to vector fields on V x (-•E, c), F(V x (-6, E)), respectively, by 

trivially setting $i(y, a) dAf @i(y, 0) and setting N,G(~.~) = dF(,,,)(&). L also extends to 
the operator dF : TV x (--E, t) --f TM. Thus 

TrNII = -i(L$i, V,L&) - $(L&. [L&, NI). 
I I 
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The last term vanishes, since [L&, N] = [dF(&), dF(&)] = dF[&, a,] = dF(O) = 0, 
and so 

TrN II = -$(L#%, vN&i). (2.1) 

Remark. Let G = a- ’ be the “Green’s operator” for 2. Then (2.1) becomes 

TrN II = -(LG+i, VNL&) = -(@i, GL*VNL@~) 

= -Tr(GL*VNL) 

1 W 
‘-l -- 

= T(s) s 
t Tr(e-“L*VNL) d&t 

0 

co 

= 

J 

tS Tr(e -“L*VN L) dt Is=o. (2.2) 

0 

Let r(s) = xi (Ai)-” be the zeta function of 2. Then f(O) = dim M, and so the variation 
of F(O) in the direction N satisfies 6~_(0) = 0. Thus we may rewrite Tr,v II as 

1 co 
TrNII = -- 

s 

aNS-(o) 
tSpl Tr(e-“L*VNL) dtls=t - __c . 

T(s) 2(s - 1) 
0 s=l 

(2.3) 

Following [ 1,141, we will use (2.3) as the regularization of TrN II in infinite dimensions. (In 
[ 141, the next to last line in (2.2) was used as the regularization, and the importance of the 
last term was shown in [I].) 

Continuing with the derivation of the first variation formula, we set gU to be the restriction 
of g to TF(~,~)F(M x {a)), and let 

La = dF(X,a)lrMxa. 

By (2. l), we have 

TrNII= -k(L&, VNL&) 
I 

= -&N(UJi, L&) 
1 

1 d =-- - 
2hi dU ar=o 

(2.4) 

where 6,x denotes the variation of ;? in the direction ~1. This expression is independent of 
the extension of the orthonormal basis (4i} on U to an orthonormal basis on U x (-6, E). 
So extend (&) to (&(y, (Y)} on U x (-6, E) so that &&(a) = Ai(a)q$(a) (dropping y 
from the notation). Note that this is not the same @(y, cr) as before. Then for 6 = 6, and 
Ai = (d/da)(,=uhi, the formula (sZ,)@i + Za(S$i) = ki4i + hia& at a = 0 yields 
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Combining (2.4) and (2.5) gives 

(2.6) 

We remark that there may be trouble defining i, where an eigenvalue bifurcates, but this 
difficulty disappears when we sum over i, so the computation above is valid. 

For F(s) = Ci(hi)-“, it is easy to check from (2.6) that 

Tr,v II = isy’(O). 

An infinite dimensional analogue is given in (3.9). 
Now let ($f } be the frame of T,* M dual to (@i 1, and let dvol be the volume form for 

i(M) at i(x). Then 

- TrN II dvol = i c 2 det “‘((L&, L+j)MT A . A qb,T 
i 

I 

(2.7) 

112 

det”‘(W&, La$j))$T c#q A ’ A c#l,* 

(cf. [ 12, p. 81). Combining (2.7) and (2.8) gives 

- (Tr II, N) dvol = -Tr,v II dvol = N(dvo1). 

This is the first variation formula, which is usually written in the global form 

(2.8) 

(2.9) 

- 
s 

(Tr II, N) dvol = N 

M 
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We now discuss the effect of allowing the metric g, on M x (a) to vary with (y. Of course, 
there is no need for this complication in finite dimensions, but it cannot be avoided in the 
next section. 

So put the metric g, @ da2 on M x t--t, E), where ~a = g. By (2.4), we have 

Here A, = LZL,, where Lfy is now defined by 

Thus 

where Nrrh = (d/da!)/,=og,. Thus we can write 6N for 6 = 6,. Using A4i = hi@; = &i 

at u = 0, we get 

1 
= -- 

2r6) s 
Ft Tr,(JNA@ . eCtA) dtJ,=r 

0 

Now set 

00 

[N(S) = L 
T(s) s 

tS-‘Trg(&~Aa . eCrA)dr, 

0 
no 

TN(S) = & / t’-‘Tr,(6~& . eCrA) dt. 

L 0 

The calculation above gives 

Tr,v II = -i([,v(l) + Tr($)), 

where (E@)’ = g”“N,.,@‘, i.e. i? lowers an index by N and raises an index by g. Similarly, 
repeating the calculation above starting at (2.4) but now using &, we obtain 

TrN II = -$TN(l). 

Thus_,,,(l) = ~~(1) +Tr(N). 
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Finally, 

1 X 
___ Tr(N) = Tr(NA-‘)I,,0 = T(s) 

s 
I’-’ T~.(fie-‘~) dtl,,n. 

0 

Thus 

I x 
Tr,v II = TN(I) = {N(I) + ~ 

f(s) s 
t”-’ Tr(Ne-“) dti,=o. 

0 

This formula is the finite dimensional analogue of (3.16), with the operator B in (3.16) a 
slightly more complicated version of I? and the added difficulty that ker A need not vanish. 
While it seems unnatural in finite dimensions to work with {N(I), it turns out to be the 
natural choice in infinite dimensions. 

3. Metrics and diffeomorphisms 

In this section we will apply the first variation formula of Section 2 to the infinite dimen- 
sional situation of the orbits of the diffeomorphism group of a compact manifold M within 
the space of Riemannian metrics on M. In particular, we will define what it means for an 
orbit to be minimal within the space of metrics, and relate this minimality to the determinant 
of a Laplacian-type operator. This is similar to the gauge theory case considered in [8.13]. 
and the general theory in [I], but has extra complications arising from the lack of a natural 
metric on the gauge group. We also produce several examples of minimal orbits. 

In Section 3.1, we set up the general theory when all orbits have the same diffeomorphism 
type. We will apply this to find minimal orbits of flat 2-tori in Section 3.2. For other examples 
of minimal orbits, we need to treat the case of orbits of varying type. This is done in 
Section 3.3. Finally, in Section 3.4 we collect some local calculations. 

3.1. Global theoy 

3. I. I. The regularized second,fund~lmental form 
Fix a compact n-manifold M. Let M denote the space of smooth Riemannian metrics on 

M, and let 2, denote the group of smooth diffeomorphisms of M. V acts on .2/1 by pullback: 
if $I E D. <q E M, then + . g = $*g. If we impose standard Sobolev norms on M, D. then 
M becomes a Banach manifold and D an ILH Lie group [ 161. and the action of V on M ix 
as differentiable as desired. 2) is also a group before Sobolev norms are imposed, and once 
the norms are chosen, composition of diffeomorphisms produces a diffeomorphism also as 
differentiable as desired. We will assume that the choice of norms has been made. 

Fix a metric go on M. The orbit ORo through go is diffeomorphic to V/&,,. where S,,, is 
the stabilizer of go. As in finite dimensions, it would be natural to assume that S,,, = {id}. 
so that the map $ H $*RO is an immersion of ‘D in .,V. To ensure that all orbits are ot 
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the same diffeomorphism type, we will assume instead that the dimension qf S, is constant 
for all g near go. To make the analogy with Section 1, we need Riemannian metrics on 
M, V. Now M comes with the standard L2 inner product. Namely, M is an open cone 
in T(S2T*M), the space of (sections of the) symmetric two-tensors on M, and the inner 
product of h, k E TgoM is given by 

(h, k)go = 
s 

(go) 
ik 

(go) il hijkkl dvol,g,t 

M 

where we follow the convention of writing a global integral in terms of a locally defined 
integrand. Here of course go = (gu)ij dx’ @J dxj locally, and similarly for h, k, with (gu)‘j 
the inverse matrix to (gu)ij. (In contrast to the gauge theory case, where M is replaced by 
a space of connections, this metric is not flat.) 2) acts on M via isometries; the geometry 
of M and the quotient space M/D is treated in [4,5]. 

To put a metric on T$V, it is sufficient to put an inner product on CdD and then left 
translate it to all of 27. However, Tidv = r(TM) has no natural metric, although once go 
is chosen it has the L2 metric 

(X3 Y)g, = 
s 

(gu)ijX’Y’ dvolg, 

M 

for X = Xi&, Y = Y’&. We will also call this metric on D just go. 
We now proceed as in finite dimensions. We consider a variation F : V x (--E, E) -+ M 

with F(@, 0) = @*go. We put the product metric go @ da2 on V x (-t, 6) and set 
L, = dF(id, a) : f (TM) + T(S2T*M). At the point g, = F(id, a), define EE, LG by 

(-Lw, II)& = (w, G&l = (w* GV)& 

forw E T(TM), q E T(S2T*M). Set & = EZL,, A, = LZL,. Of course& = do. 
Note that since we must use the product metric as in finite dimensions, we cannot use 
the natural operator A,, but are forced to use the non-natural ;?,. Our assumption on the 
stabilizer is equivalent to assuming that dim ker & is independent of (11. 

Following [ 1,141 we now define minimal orbits of metrics by means of (2.3). We let (@i) 
be a go-orthonormal basis of L2(TM) satisfying 24, = A& = hi@i. As we will see in 
Corollary 3.2, A, is elliptic, so such a basis exists for all CY, and by standard techniques can 
be chosen to depend smoothly on (11. We set the zeta function of & to be 

F(s) = c k;“. (3.1) 

&I 

We similarly define 5, for A,. This converges for Re(s) sufficiently large, and has a 
meromorphic continuation to all of @ with a regular value at zero; this follows in a well 
known way from the ellipticity of d and the subsequent asymptotic expansion of its heat 
kernel. Note that in contrast to the finite dimensional case, the kernel of A need not be 
trivial. However, by ellipticity the dimension of the kernel of L and hence of A is finite, 
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and is independent of g E c?,,, since Lid = (d$)-‘L$ d+, for I/J : ID + ‘D acting by 
left multiplication. It follows that 0,” is always a submanifold of M. and that L;, L,J, is 
isospectral to L$Lid; in particular, c’(O) for the zeta functions associated to these operators 
is constant along orbits. 

Definition. The component qf the truce qf the second,fundumerztal,~~rm in the direction N 
for the orbit of a metric ~a is defined to be 

Trv II = lim 
1 co f(s) t’ s 

hm) 
-~ 

s- I 
‘-’ Tr,,(e-“L’VNL) dt - ~ . 

2(x - 1) 1 (3.2) 

0 

An orbit URo is minimal if TrN II = 0 for all normal vectors N at go. 

Remark. Here V is the Levi-Civita connection for the L’ metric on M, defined as usual 

by 

2(VxY, Z) = X(Y. Z) + Y(X, Z) - Z(X, Y) 

+ (LX, Yl, 2) + ([Z. Xl, Y) - ([Y. Zl. X) 

(cf. [4]). The term VN L in (3.2) equals (d/da)l,,aL, in a frame in which VN = 6~ (i.e. L 
is varying). Since we are taking the trace at ~0, we may replace 2 by A in the integral. 
However, 7, (s) = &(s), the zeta function for A,. only at (Y = 0, so we cannot replace 
SNC(O) by S,<(O). Note that (3.20) shows that c,(O) is smooth in (Y under our assumption, 
so S,c(O) makes sense. As is shown below in (3.9). the last term in (3.2) subtracts off a 
possible pole from the first term, so we can also write 

‘-I Tr,,(e-“L*V,vL) dtl,,=, . 1 (3.3) 

where FP denotes the finite part. Note that since ;I) acts isometrically, TrN II = 0 for all 
normal vectors at go iff the same is true at any g E oKo. This is clear for orbits of isometric 
actions in finite dimensions, and can be checked by directly examining the right-hand side 
of (3.2); an easier proof will be given below. 

We now show that the right-hand side of (3.2) is always finite. We have 

I O” -~ 
T(s) s t”-t TrRo(e -‘“L*VNL) dt 

0 

(L*VNL&, e-‘A~~)Ko dt 
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1 O” -- 
= 2r(S) s t 

‘-’ Tr,, (S& . eC”) dt 

0 

= -&&I, 

(3.4) 

(3.5) 

where 

00 

-&v(S) = --!- 1 O” 

f(s) s ?‘-I TrRO (axe-‘“) dt = - 
f(s) s 

ts-’ Tr,(SxeC’“) dt. 

0 0 

Of course, this computation should be read as being valid for Re(s) sufficiently large, 
where the convergence of the integrals is easily established. For example, consider the term 
Trgo(d’;?ePtA) in the last equation. The operator J,JI~. eprA has kernel (sNa),e(t, x, y), 
where e is the kernel of eCtA, and so has a good asymptotic expansion as t + 0 
[6, Lemma 1.7.71. Breaking the integral lo” into 1; + j’rW and plugging in the asymptotic 
expansion into the first integral shows that this integral exists near zero for Re(s) sufficiently 

large. Also, since A = A at go, Tr(G,v?i.ePfd) = Tr(z*S,v L .e-“+8NL*. L .e-“). Now 

the kernel of Le-” has exponential decay as t + cm, since ker A =ker L, and hence so 

does the kernel of 6NI*. L s-“. On ker L, (x*6, L .eerz@, 4) = (6~ L .e-“+, L$) = 0, 
and so TrRO (SN~* L . e-“) also has exponential decay as t -+ co. Thus the integral ex- 
ists at infinity. (By (2.4) and (3.5) definition (3.2) of the regularized trace agrees with the 
definition in [l, (3.5)].) 

To proceed with the proof of the finiteness of (3.2) we note that by the Mellin transform 

00 

f(S) = 1 
f(s) s 

t”-’ Tr,(eC” - p) dt, 

0 
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where P is the orthogonal projection of L*(TM, go) onto the kernel of 2: adding in this 
projection makes the integral finite near infinity. 

Lemma 3.1 (cf. [ 14, Lemma 5.51). For all s E C. 

(s - I)&&) = -8/y.(S - 1). (3.6) 

At poles of TN(~), this equation is to be interpreted as saying that the poles of tlV(.~) 
coincide with the poles of T(S) shifted by one. 

Proof of Lemma 3.1. By the uniqueness of the meromorphic continuation of TN(s) and 
c(s), it suffices to prove the equation for Re(s) > 0. Under the assumption that dim kern 
is constant, we get 

oc 
S-l 

(s - l).N(s) = - 
s 

t 
l-(s) 

‘-’ Tr((sva)e-“) dt 

0 

1 cxi s ‘-* 
=-I-(S - 1) I’ 

Tr( -r(6,v;?)eFrd) dt 

0 

CC 
I 

=-I-(.? 1) s tx-2S,v Tr(e-“) dt 

0 

1 Ocj 
=-f(s - 1) s t.‘-2 8~ Tr(e-” - P) dt 

0 

= -f&&S - 1). 

Here we have used (2.5) to write 

- t . TrKo (8,vn . eerA -) = -t C e-*if (aN&;, $;) = -t C e-*l'i; 

i i 

= 6~ Tr,,,,,(eK”). 0 

Combining this lemma with (3.2) and 3.4), we get 

TrNII=-1 lim 
[ 

-8NS(S - I) 

2 S-*1 s - 1 
+ S,?(O) 

s - 1 1 
=-A lim 

2 s-+0 
[ 

-hvmo) + sY’(O) + oh*)] + 8,-f(O) 
s s 1 

(3.7) 

(3.8) 

= ;s,g’(o). (3.9) 
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In summary, by (3.3) (3.5) and (3.9), we have 
_ --I 

TrNII = iFPJN(l) = :6’,v[ (0). (3.10) 

It is standard to relate the right-hand side of (3.10) to the regularized volume element 
for 0, at ga. For & fixed to be independent of CX, the volume element to the orbit at g, is 
formally 

= J det((&&, 4i)go)$~ ~4; A ... (3.11) 

(3.12) 

Since the (4i) are go-orthonormal (and not g,-orthomormal), it is heuristically plausible that 
the expression under the square root in (3.11) should give the determinant of &, whereas 
the corresponding term in (3.12) should not be thought of as det A,. Using the Ray-Singer 
regularization of the determinant of a Laplacian-type operator, we define (the “Hodge star” 
of) the volume element to 0, to be the non-natural exp(-iF&(O)). where r, is the zeta 
function for A. In particular, (3.10) shows that an orbit is minimal iff it is minimal among 
all nearby orbits, provided we assume that all nearby orbits are of the same type (i.e. all 
nearby orbits have dim ker L, = dim ker Lo, or equivalently are diffeomorphic to 0,,. 
The point here is that the zeta function behaves discontinuously in (Y if the dimension of the 
kernel jumps, so our analysis breaks down.) As in [ 14, Theorem 5.141, we interpret this as 
an infinite dimensional analogue of Hsiang’s theorem in finite dimensions, which reduces 
the search for minimal orbits to checking variations only through orbits, and not through 
arbitrary submanifolds. 

3.1.2. Comparing determinants 
In order to produce examples of minimal orbits, we need to compare S,?‘(O) with the 

more natural 8,v<‘(O) for two reasons: c’(O), although notoriously difficult to compute, can 
be handled in some special cases (cf. Theorem 3.2), and Bleecker’s theorem about critical 
metrics applies to natural Lagrangians (cf. Theorem 3.5). Here [(s), &(s) are defined in 
the usual way from the non-zero eigenvalues of A, A,. 

Looking back at (3.4), we get 

Denote go just by g. Since (d/da)],=og, = N, we have 
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d 
=- 

I s da a=o 
(g,)a~4~(Aa~i)b dvolka) 

M 

z s Nab$~(&@ijb dvol(go) + s gnb4~((6&)&)* dvOl(go) 
M M 

+ s guvP~(Ao4ijh(trx,, Nj dvol(go) 

M 

+ (tr(NMi, A@i)g~ldvOl(go). (3.13) 

Define the 0th order operator A on F (TM) by A : t#P&, t-+ gS(‘Nc.(,df 3,. Note that A lowers 
an index by N and raises an index by ,g = go. 

Thus 

+ (tr(NMi, A+i)g”) dr 

1 co 
(6i3 A*Ae-fA&),,, dt + T(S) / F’ Tr,,(6A,e-‘“) dt 

0 

(&, tr(N)AeC”&),, dr. (3.14) 

Because $“N,, = Ni is a self-adjoint transformation of TM, A is self-adjoint. Explicitly. 
we have 

(A*qk)“ = N,48;Qb = N$bb = (A$)q. 

Thus if we set 
cc 

IN(S) = ’ - 
T(.y) s 

ts-’ Tr(GA,e-‘“) dt, 

0 

(3.14) gives 

1 O” 
?N(“) = [N(s) + - 

f(s) t s 
‘-’ Tr(BAe-‘“) dt, 

0 
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where B is the 0th order operator on TM given by 

Bq5 = AC#J + trso N . r,b. 

It is easy to extract from (3.13) that B is characterized by 

Using (8, + A)eC’” = 0 gives 

1 O” 
TNw=IN(S)-- 

r(s) s ts-’ Tr(Bi3te-‘A) dt 

0 

03 

S-l 
=Jrv(s) + - 

T(s) r s s-2 Tr(B(e-” - P)) dt 

0 

= &v(S) + 
l cc s-2 

s 
t 

l-(s - 1) 
Tr(Be-” - BP) dt. 

0 

(3.15) 

(3.16) 

Recall that P denotes projection onto the kernel of ‘;? = A; this term is added to make the 
integrals converge at infinity so that the integration by parts is valid. By the remarks after 
(3.2) and (3.9, 

TrN II = iFPS,,,(l) 

= ;FP 
1 O” 

~~(1) + - 
T(s) s 

ts-’ Tr(Be-” - BP) dtl,=c . 

0 

(3.17) 

We now analyse the last term in (3.17). Let e- ‘A havekemele(t,x, y) E r(T,M@T?.M) 
with asymptotic expansion 

e(t, x, xl - tk-@12)uk (x, x) as t 4 0 
k=O 

(n = dim M). Then Bee’” h as k emel B,e(t, X, y) where B, means B acting in the X- 
variable. Thus 

B.&(t, x, Y)~x=~ - ~tk-‘r’2&%(& y)Ix=?,, 
k 

and so for N >> 0, 

1 w 

-1 l-(s) 
t”-l Tr(BeC’” - BP) dtl,=o 

0 
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1 O” 
f- 

rcy) s 
tY-l Tr( Be-t’ - BP)dtls=o 

k - n/2 + s 
+ O(t Nfk-a/?+s) Tr(BP) 

+0 
s 

s=o 

s tr B.yu,1/2 dvol(gn) - Tr(B P), n even 
= 

M 

-Tr(BP). n odd. 

In particular, the last term in (3.17) is always finite, so 

r 

(3.18) 

with the understanding that the integral is zero in odd dimensions. As in (3.10), this shows 
that 

TrN II = i 

[ 

s,{‘(O) + 
s 

tr B,u,,/~ dvol(gu) - Tr(B P) 1 (3.19) 

M 

To sum up, in odd dimensions the non-local quantities S,?‘(O), s,{‘(O) differ only by 
Tr(BP), and in even dimensions they differ by this term and the integral of a local 
expression. 

Finally, we discuss the usual volume fixing conventions. As is clear from Lemma 3.2, 
under a scaling of the metric x H h2g, we have A H K’A. This implies that t’(O) H 
c’(O) + 2 log h . t(O). As in (3.18) 

tr u,,/2 dvol(gu) - dim ker A. n even. 
C(O) = 

1 

s 
M (3.20) 

-dimkerA, n odd. 

Thus c’(O) is not scale invariant unless II is odd and we are in the “generic” case ker A = 0, 

which corresponds to M admitting no one-parameter family of isometries. So in general, 
we must restrict attention to infinitesimally volume preserving variations of the metric, or 
to those directions N with sM tr(N) dvol(gn) = 0. These directions need not be normal 
to 0,“. However, writing N = NT + N” in its tangential and normal components, we 
have 6,r{‘(O) = 0 and so S,<‘(O) = s,v~<‘(O). Thus we will restrict attention to normal 
variations which are projections of infinitesimally volume preserving variations N, and 
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we still have that an orbit is minimal (among orbits with such variation vector field) iff 
S,{‘(O) = 0. The easiest way to arrange this is to restrict attention to Mk, the set of 
metrics on M of fixed volume k; Mk is a codimension one submanifold of M. 

There are topological conditions which force all orbits to be of generic type. Of course, 
the diffeomorphism type of an orbit Qg, is determined by the stabilizer S,, = ker L. 
This is the space of infinitesimal isometries of go, so dim ker L equals the dimension of 
the space of isometries of go. If i(M) # 0, then as noted in [9, p. 591, by a result of 
Atiyah-Hirzebruch M does not admit a circle action, much less a non-discrete Lie group 
of isometries. Moreover, if pt (M) = 0, then there is an infinite sequence of characteristic 
numbers which are obstructions to M admitting a circle action [ 131. 

3.2. Minimaljat tori 

We will now determine two minimal orbits of flat 2-tori of fixed volume and show that 
one orbit is a stable minimum. This proceeds in two steps: first showing that we may use 
the natural t’(O) to compute TrN II, and then using the action of SL(2, Z) on the space of 
tori to find critical metrics for (‘(0). Finally, work of Montgomery [ 1.51 determines the flat 
metric for which c’(O) is minimal. 

As we will see, the dimension of ker ‘zi is independent of the flat torus. This implies that 
we can use definition (3.2) to compute TrN II, since r(O) is a smooth function of the tori. 
By (3.19), Tr,v II = (1/2)[6~[‘(0) - Tr(BP)] provided 

I tr BXut dvol(gn) = 0, 

M 

whenever gn is a flat metric on a torus. Of course the variation direction N contained in the 
definition of B must be infinitesimally volume preserving, i.e. 

s trgO N dvol(gu) = 0. 

M 

Note that in fact trgO N = 0; i.e. N is volume element preserving. For if the torus is 
given by the lattice spanned by (I, 0)) (CI, b), then the volume form for the coordinate chart 
x H x + uy, y H by is bdn A dy and the volume of the torus is of course b. Thus the 
condition 6Nb = 0 is equivalent to both volume preserving and volume form preserving. 

Proposition 3.1. On an n-manifold M, Tr(Be-‘“) has an asymptotic expansion 

Tr(Be-“) - F tk+/2) / bk(x) dvol. 
k=O M 

On flat even dimensional manifolds, b,lz(x) = 0. 
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Of course, bk(x) = Bxak(x, y)lx=,., so the existence of the asymptotic expansion will 
follow from that fore- “; this in turn is immediate from the ellipticity of A, which we will 
show in Section 3.4 along with the proof of Proposition 3.1. 

Corollary 3.1. For volume preserving variations ofjut 2-tori, TrN II = (1/2)(6~<‘(0) - 
Tr(BP)). 

Proof It is standard that 

1 cy, 
- 
T(s) s 

t’-’ Tr(Be-“) dtl,=u = 
s 

b,(x) dvol 

0 h4 

on a 2m-manifold. By Proposition 3.1, bl vanishes on a flat torus. 0 

We next show that Tr(B P) = 0. Complex structures on S’ x S’ are parametrized by the 
upper half plane W, where the point t = (a, b) corresponds to the torus associated to the 
lattice generated by (l(O), (a, b). Two structures are isomorphic iff the lattices differ by 
an element of SL(2, Z) or a homothety. Conversely, a flat torus comes from a lattice and 
so gives rise to a complex structure. However, a homothety of a lattice gives rise to a flat 
torus with a scaled metric, so these tori are not isometric. Thus tori of fixed volume are in 
one-to-one correspondence with W/SL(2,Z). 

Fix (a, h) E E-4. For the associated torus T$,b, with coordinate chart [O. I] x [0, I) + 

T&)(X, .v) H (x + ay, by), the metric takes the form 

since a., = i, 8, = ai+bj, where {i,j) are the standard basis of R’. To show thatTr(B P) = 0 
for all tangent vectors N at (a, b), it suffices to consider the cases where N is a vertical 
vector or a horizontal vector. (We avoid naming these vectors to avoid confusion with a_, , a! 
above.) Consider first a horizontal vector N. When we vary the metrics in the a direction, 
the variation two-tensor for the metrics is 

(The trace of N is non-zero because we are not working in an orthonormal frame at a 
point.) It is easily seen that the kernel of A is two-dimensional on Ti,b,, since the group 

of isometries of Ti.6, consists of translations and possibly a discrete group of rotations. In 

particular, (a., . a,.) span ker A. The L2 inner products of this basis are given by 

(a,. 8,) = b, (a,, a?) = ab, (a,, a,) = (a2 + b’)b, 

e.g. 

(a,, i3,) = 
s 

gij (a,)’ (a,)j dvol = 
s 

g12b dx dy = ab. 

lo.llxlo,ll 10.11x10.11 
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Thus an orthonormal basis of ker A is given by (b-‘/*a, , bp3/*( ay - a&)). As before 
Tr(BP) contains two terms, one of which as before involves tr N and so vanishes. The 
other term contributes 

Tr(BP) = A(sa,, a,) + &B(i), - aa,), a, - 4) 

1 
=- 

b s 
gi,giCNcaS’a dvol 

[0.11x~0.11 

+$ 
s 

gi2kicNca~k - u(g“‘Nc,S’“)] dvol 

lo.ll~[o,~l 

-- 
b”, s 

gi 1 kiCNcaS2a - a(g”NC,S’U)]dvol 

[0.11xI0,11 
1 1 

=- 
b s 

NII +- 
b3 s 

(N22 - uN12) 

[0,11~w.11 [0,t1~[0,11 

s 
(N12 - uN11) 

10.11x[0,11 

= 0, 

since Nt t = 0. 
For a vertical vector N, we not only alter b but also rescale the torus to fix the volume. Thus 

for t E [0, ??] we consider the torus with chart given by (x, y) H (( 1 - t>-’ (x + uy), (I - 
t)by); this is the torus of volume b associated to the point (a, (1 - t)*b). (We use (1 - t)* 
rather than 1 - t to avoid square roots in the calculation.) Now 3, = (( 1 - t)-' , 0), aY = 

((1 - t)-‘u, (1 - t)b), so 

(gij) = 
(1 -t>-’ (1 -pa 
(1 - t>-*a (1 - t)-*a” + (1 - t)*b2 > . 

Thus 

N= 
2 2u 
2u 2u2 -2b* > 

and 

Tr(BP) = i(Bi),. a,) + $(w, - aa,), ay - aax) 

1 

s 

I 
=- 

b 
NII +- 

b3 s 
CA’22 - uf’J12) 

[0.11xKh11 [0,11~Kk~1 

s 
(N12 -~NII) 

[0.11x[0.t1 
= 0. 
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These cancellations indicate that a second proof that Tr(BP) = 0 can be obtained by 
mimicking the proof in Theorem 3.5, replacing G by [WI, G/H by the torus, and using the 
G invariance of the flat metric. We leave this to the reader. In any case, we find that for 
volume preserving variations of flat tori, 

TrN II = iS,{‘(O). (3.21) 

This natural equation determines two flat tori whose orbits are minimal 

Theorem 3.1. The orbits ofthejut tori associated to the lattices (1.0). (0. 1) and ( 1 . 0), 

(i, $ fi) ure minimal within the space qf alljat metrics of,fixed volume. 

Prooj The points (0, l), (i, id’?) are the only points in the upper half plane with non- 
trivial stabilizer for the action of SL(2, Z), and the stabilizer subgroups are isomorphic to 
ZZ, 723 at these points, respectively [ 18, Ch. VII]. The differential of the action of a generator 
of the stabilizer groups therefore acts via rotation of rr, in at the two fixed points. Since the 
action is by isometries, it must take the gradient vector of t’(O) to itself. Thus the gradient 
vector must vanish at these two points, i.e. J,{‘(O) = 0. 0 

The proof above is a (trivial) example of Palais’ symmetric criticality principle; Hsiang’s 
theorem is a non-trivial example [ 171. 

We can obtain more information about the orbit at (i, i A) by computing C(s) in terms 
of the Epstein zeta function for the dual lattice of the torus. Recall that the dual lattice 
L* to a lattice L in [w2 is given by the set of x* E [w’ such that (x*,x) E Z for all 
x E L. It is shown in [2, Ch. III.B] that the spectrum (with multiplicity) of the Laplacian 
A0 = - cf=, (a/axi)’ on functions on the torus is given by (4~r~]x*]~:x* E L*). If L* is 
spanned by a* = (1, 0), b* = (b), bz), then for x* = ma* + nb*, (x*12 = m’ + lblmn = 

(h: + h+bz’ = ,f (m, n). Thus 

where the last term is by definition the Epstein zeta function of the lattice L*. 

Proposition 3.2. Let [E(S) = {E.L* (s) denote the Epstein zeta function associated to the 
lattice L*. Then the zeta function for A for the torus Ti associated to the luttice L satisfies 

t(s) = (1 + 2?)(4n2)-“&(s). (3.22) 

Prooj The eigenfunctions for A0 are given by 

fK* (u) = e21r(X*,v) 

for x* E L* [2, Ch. IIIB]. Thus any function ,f E L2(Tf) can be expressed as 

.f (Y) = c a** fx* (Y). 
X*EL* 
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A smooth l-form u = ~~=, Ui (x) dx’ has the decomposition 

Ul(Y> = c ax*“fx*(Y>9 U2(Y) = c b*“L*(Y). (3.23) 
x*EL* x*EL* 

By the local expression for A given in Corollary 3.2, the eigenvalue equation for A becomes 

(Au)j = - 
2 a2uj 

c- 
i=l a$ 

= AUj. (3.24) 

Substituting (3.23) into (3.24) yields 

c 4n2( 1x* ~%+zx* + 
X*EL* 

w%*>_tG = h c ax*_&, 

c 4n2(1x*12bx* + q%zx* + B2bx*)fx* = h c bx*fx*, 
X*EL* 

where x* = (a, B). Setting h/4n2 = /_L, we find that the eigenvalue h satisfies 

Thus we have 

Note that the zero eigenforms of A form a two-dimensional space, agreeing with our earlier 
computation. 

In conclusion, the zeta function of A is given by 

= 1 + ; (4n2)-“{&). 
( > 

0 

The value of {b (0) is given in terms of the Dedekind eta function [ 11, Ch. 201. However, 
it seems difficult to determine lattices for which <L(O) is critical this way. 

Since the volume element is formally given by the (square root of the) determinant of 2, 
by (3.10) and (3.21), it is natural to measure the stability of a minimal orbit by the second 
variation S2 N,M det 2. For flat tori, by (3.10) and (3.19), T’(O) and c’(O) differ by a constant, 

so we may measure stability by 8; M det A. We will say that a minimal orbit is stable if 

’ S;.,<‘(O) 2 0 for all N, M. 

Theorem 3.2. The orbit of thejlat torus associated to (i , 1 a) is stable within the space 
offlat tori ofjixed volume. 



E Maeda et al. /Journal Qf Geometry and Physics 23 (I 997) 319-349 339 

ProojY Set t(s) = {~(s)r(s)(271)-‘. By [15, p. 751, t(s) has a minimum at the torus 
associated to ($, $&) for all s E (0, i). (This uses the fact that L* = L for this lattice.) 
Thus 0 5 Si,,[(s) for all s E (0. $). Substituting (3.22) for {E(S) gives 

N.AJ~(~) + d’,,&(O) + o(S2)) f + 1 + 0(s2) > 
Here we have used c(O) = -dim ker A = -2 for all flat tori. Letting s go to zero gives 

0 56;,,{‘(o). 0 

The same argument for first variations gives another proof that this torus gives a minimal 
orbit. 

3.3. Orbits of varying type 

While the case of generic orbits (and more generally families of orbits of fixed type) 
treated in Section 3.1 is easiest to handle, minimal orbits often occur outside these cases. 
In particular, in finite dimensions, it is an easy corollary of Hsiang’s theorem that orbits of 
isolated diffeomorphism type are minimal submanifolds. The proof uses the exponential 
map, which may not be available in our context. We now discuss how to handle orbits of 
varying type in infinite dimensions. The main results are that orbits of isolated type are 
minimal (Theorem 3.3) and that isotropy irreducible homogeneous spaces with invariant 
metrics are minimal (Theorem 3.5). 

Let h = ho be the first non-zero eigenvalue of &. There is a neighbourhood of 0 
in (T,,,C?,,)’ such that ih is not in the spectrum of Ago+~ for all N E U. For gU = 
~0 + cx N (N E U. cx E [0, l]), let 7 = P, be g,-orthogonal projection into the sum of the 
eigenspaces of 2, with eigenvalues less than $h. Following [ 14. (5.17)], for T > 1 set 

T 
1 tS-l - 

f(S) s 
Tr,q,,(e-“U) dt + Tr 

RI1 
(,-da--P,)) dt, 

0 T 

Both integrals are now smooth functions of (Y. Note that rr(.~) = r(s) if dim ker A is 
constant near go. 

We have 

_ - 1 
SN(T(S - l)=sN<~tS - 1) + 

T(s - 1) s t”-l8N Tr(eCtZ) dl 

T 
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1 cc - 
r(s - 1) s 

F2c!iN Tr(e-“) dt 

T 

1 O” 

= f (s - 1) s 
F2SN Tr(e+) dt 

0 

1 cc 

s 

-- 
+ 

T(.S - 1) 
F26N Tr(e-‘(A-P)) dl 

T 

1 O” - 
r(s - 1) s 

F2L5N Tr(e?‘) dt 

T 
lx 

= -(s - l)TN(s) + r(s’_ 1) 
s 

rm28N Tr(e-‘(A-P)) dt 

T 

1 co - 
f (s - 1) s 

tsd2SN Tr(e-“) dt. 

T 

Here we have used the part of (3.7) which does not assume that the kernel has constant 

dimension, and we recall that 8~ Tr(eCfd) has exponential decay at infinity by the remarks 
after (3.5). Thus 

M 

‘&$‘tT(S - l) = -(s - 1)&S) - $_ 1) 
s 

re28N Tr, (Pe-“) dt. (3.25) 

T 

Moreover, the last term in TT(S) is zero at s = 0, while plugging in the asymptotics for 

Tr(e-“) into the first integral yields 

IT(O) = T(O) + dim ker;? = 

L 

s 
tr an/z, n even, 

M 

0, n odd. 

We now extend the definition of TrNII for orbits of arbitrary type. 

Definition. 

O” 1 
Tr,vlI= lim -- 

S’ 1 [ 
r(s) s 

t ‘-’ Tr,,(eCtzL*VNL) dt - 
b~T(o> 

2(s - 0 1) I 

CxJ 1 
= lim 

T(s) t s 
‘-’ Tr,,(e-“L*VNL) dt + 

8~ (F(O) + dim ker 2) 
-- 

2(S-1) 
. 

$41 0 1 
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As before, we may replace n with A. Since (3.4) is unchanged, by (3.25) we get 

Tr,v II = -1 lim 
-S&(S - 1) 

2 s-l s - 1 

cc - 
1 

+ (s - l)f (s - 1) s 

JNS‘T(O) 
f’-*?i~ Tr(‘?ie-“) dt + s-l 

T 

3-2 

= ;s,r;co, - ; s t-‘6,v Tr(Pe-IA -) dt. 

T 

(It is shown in [ 14, p. 2001 that S,v Tr( Pe-‘“) has exponential decay at infinity.) 

Theorem 3.3. An orbit O,, of isolated d@eomorphism type is minimal. 

341 

1 
(3.26) 

Proof: The isometric action of the stabilizer SRO on M induces an action on TR,,O,,,. still 
given by I$ . IJ = $*u, which is easily seen to be unitary. Thus SK0 acts unitarily on X = 

(TKO%)~~ 
Since M is compact, S,, is a compact Lie group, so X splits into a sum of finite di- 

mensional irreducible representations Xi of SR,). On each piece we can define Tr 111x, = 
Cj(Tr,v, II)Nj, where [Nj] is an orthonormal basis Of Xi. Tr 111x, is of course independent 
of the choice of this basis, so for all 4 E Sxo, TrIIlx, = C,j(Trd@(N,) II) d@(Nj). But by 

(3.26) TrN 11 = Trdbc,v) II, since2 stays isospectral under the action of 4 (cf. [ 14. (5.23)]). 
Thus TrIIlx, is fixed by S,,: i.e. TrIIlxl = d@(TrII(x,). 

If OR,) is not minimal, then TrNo II # 0 for some No E X, and hence on some neighbour- 
hood of NO in X. The vector space spanned by the { Nj}, i = I, 2. . ., is dense in X. and 
so Tr 11(x, # 0 for some i. (If we knew that N t+ Trly II were continuous in N, then from 
Tr,v,) II # 0 we could directly conclude Tr 11(x, # 0 for some i .) 

Set Tr II/x, = A. We now claim that the orbits OSO+F~ are diffeomorphic to C$,, for all 
t > 0; this contradicts the isolation of UsO. Note that for all $ E D 

d+(A) = $ _ $*(go+aA) = ; _ $*go +w$*A = $*A. 
(Y--o U-0 

~'J~*(Ro+~A) =$*gO+t d$(A).ThusC’,,+,n = 0,* KCj+c@(A). Also, since d@(A) = A. 

we have 4*ko + CA) = go + CA iff 4 E S,,. Thus ORo+tA z D/s,,, x uKo. 0 

Theorem 3.4. The orbits qf the,following metrics are minimal within the space of metrics 
offixed volume: 
(i) the standard metric go on S”; 

(ii) the standard metric g1 on RP”. 
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Consider the product metric ds2 @ go on S’ x S”, where ssI ds2 = 2~. Consider the 
space M’ of all metrics on S’ x S” except diffeomorphism orbits of metrics E ds2 @ ~‘/~gu, 
for E > 0. Then the orbit of ds2 @ go is minimal within M’. The same statement holds,for 
ds2$gt onS’ x 5Wn. 

Prooj S” and RP” with their standard metrics are the only compact n-manifolds of fixed 
volume with isometry group of dimension n(n + 1)/2 [9, Theorem 3.11. Thus these or- 
bits are isolated. S’ x S’, S’ x RP”, with metrics ads2 $ Bgo, o ds2 @ flgt, are the 
only compact (n + I)-manifolds with isometry groups of dimension in(n + 1) + 1 [9, 
Theorem 3.31. If we set a! = /I = 1 and exclude other metrics of the same volume, then 
these orbits are minimal. 0 

We now produce a much larger list of minimal orbits (including the standard metrics on 
symmetric spaces) by replacing the non-natural TT (s) with its natural analogue. 

Let Au be the first non-zero eigenvalue of do, and let P = Pa denote g,-orthogonal 
projection into the eigenspaces of A, lying below iho. Set 

CT(S) = IT,a (s) 

T 
1 

=- 1 O" r-l 
f(s) s 

ts-’ Trs, (eCtAU) dt + - 
f(s) I' s 

Trga(e- W,-&,)dt. 

0 T 

For a! close to zero, both terms on the right-hand side are smooth in o. By (3.16) and (3.25) 
we get 

8N{T(s - I)=-($ - l){A'(S) - 
1 O3 

T(s - 1) s 
tSe26N Tr,, ( Pue-tAu) dt 

T 

= -(s - 1) 

1 

a3 

FNW - l 
f(s-1) t s 

s-2 Trgo(Be-‘” - BP)dt 

0 

cc 

r(s-1) t s 
“-2S~ Tr,, (P,e-‘““) dt 

T 

cc 

=b’fT(S - 1) + 
s-l 

F(s- 1) s ” 
‘-’ Tr,, (Be-‘” - BP) dr 

0 

cc 
1 

+ 
F(s-1) t s 

S-28,v[Trfi,(~~e-‘dV ) - Trsol ( Pae-‘Aa)] dt. 

T 
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Thus by (3.26) (and omitting the a’s), 

Tr,vII=-1 lim 
-SNCT(S - 1) 

2 .s+l s-1 

I O” 
+ 

s 
t’-2 

f (s - 1) 
TrRo (Be-” 

%VFr (0) 
- BP)dr + s-l 

0 1 
I cc -- 
2 s 

tC’G,v[Trg,((Pep”) - Trgw(Pe-“)] dr 

T 

1 x 
- - 1 t-‘8N Tr,,(peCrA 

2 
-) dt. 

T 

We now make the third term in the above limit more natural. We have 

1 O” - 
f(s - 1) s 

t”-*KN Tr,<,(PeC”) dt Is=1 

T 1 
1 

= ~ 
s - 1 

- (s - l){N(.~)I.s=I 

- (‘-‘) 3o ‘-2Tr (Be-” -BP)dtl,=l 
f’ T(s - 1) s R” 

F 

0 

1 cc - t 
r (s - 1) s ‘-*6, Tr,,,(Pe”) dt Is=l 

T 1 
Now we know (l/f (s) Jo” t”-’ Tr(BeC’” - BP) dtLo is finite. so 

s-l cc 

s 
tSF2 

I-(.~ - 1) 
Tr(BeC” - BP) d&z1 = 0. 

0 

Thus by (3.25) for [T(S), 

(3.27) 

~NFT(O) 1 1 x = - 
s - I s - 1 

SN(T(S - 1)l,s=l + I-(s - 1) s t”-*8N Tr,,(PepfA) dt(,=l 

T 1 
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03 

- / dSN TrgO(FeC’A -) dt 

T 

sN(_T(o) m 02 

=-----+ 

S-l s t-‘&N T’rgol (Pe-“) dt - 
s 

t-‘6N Tr,,(Pe-“) dt. 

T T 

Substituting this into (3.27) yields 

Tr,vII=--! lim 
--sNcTb - 1) 

2 s-1 s - 1 
+ 8NcT(O) 

S-l 1 
1 

s 
s- 1 -- 

2r(s) t 
Tr,, (Be-” - BP) dtl,=o 

0 

lco -- 
2 s 

t-‘6N TrK,,(Feerd) dt. 

T 

Plugging in the Taylor series for {T (s - 1) near s = 1 as before gives 

1 1 
Tr,v II = +,$(O) - - 

s I 
s-l 

2f (s) 
Tr, (Be-‘” - BP) dt Is=0 

0 

lco -- 
2 s 

t-‘SN Trxn(Pe-“) dt. (3.28) 

T 

Recall that a homogeneous space G/H is called isotropy irreducible if the linearized 
isotropy representation of the identity component of H on T[Id](G/H) is irreducible. A 
complete list of simply connected examples other than symmetric spaces was given by 
Manturov, Wolf and Kraemer, see e.g. [ 10,191. 

Theorem 3.5. Let A4 = G/H be an odd dimensional simply connected isotropy irreducible 
homogeneous space with its G-invariant metric go of volume I. Then C?,, is minimal within 
the space of all volume one metrics. 

Proof In odd dimensions, we have by (3.18) and (3.28) 

1 1 Y 
TrN II = -SN<~(O) + -Tr(BP) - - 

2 2 2 s 
t-‘6N Tr(pe-“;“) dt. 

T 

Now <T,(y(s) is a natural Lagrangian in the sense that it depends naturally on the metric 
g, except for the term P,, which depends on the non-natural k-0. However, thinking of ho 
as just a universal constant shows that <T,(y(s) is a smooth natural Lagrangian for metrics 
ga near go. (It will fail to be smooth for metrics on manifolds with iho in the spectrum 
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of A.) This is enough to apply Bleecker’s theorem [3] that invariant metrics on isotropy 
irreducible homogeneous spaces are critical for natural Lagrangians. (In brief, the gradient 
vector for this Lagrangian at gn will be a G-invariant symmetric two-tensor on G/H and so 
by hypothesis will be a multiple of the metric. Since we consider metrics of fixed volume. 
this multiple must be zero.) We conclude that S,v<;.(O) = 0 for all N E (7&0,q,,)1. Thus 
for these N. 

x 

Tr,v II = kTr(UP) - 1 lim 2 T-tm 
s 

t-‘J,v Tr(Pe-‘“) dt = kTr(BP) 

T 

We now show that Tr(BP) = 0. By [19, Theorem 17.11, the identity component 
of the isometries of G/H is given by multiplication of cosets by elements of G. (For 
S7 = Spin(7)/Gz = SO(S)/S0(7), we choose G = SO(g).) If {pi) is an orthonor- 
mal basis of n, the Lie algebra of G, then ker A is spanned by (Pi), where (P;)R~ = 
(d/dt)l,,n(expc; tpi)gH. This basis is L2-orthonormal, as 

(P;. pj, = .I ((dldt)lt=o(expG tpi)gH, (dld~)l4expG rPj)gH),qH dvol 
GIH 

=.I ((dldt)lf=o(expG tp;). (dldt)14expG fpj))H dvol 

GIH 

=s (pi. pi) dvol = 6;i 

GIH 

by the G-invariance of the metric. 
Tr(B P) has two terms, one of which is the trace of the pointwise multiplication by tr( N). 

This term contributes 

(tr( N) P;, Pi) dvol = (dim n) 
s 

tr(N) dvol = 0, 

GIH 

since N is infinitesimally volume preserving. The second term A contributes 

if P; = $(‘&, locally. At a point we can of course take a, = P,, in which case gij = 
Sij, Pi” = 69 and the integrand becomes xi Nii = tr(N). Thus the second term also 
contributes zero. 0 

Remark. From the proof we see that 0 = TrN II = -iIF r-‘S,v Tr(PeCfZ), which 

implies that SN Tr( Pe-“) = 0. Thus go is critical even for this non-natural Lagrangian. 
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3.4. Local computations 

In this section we will produce the asymptotic expansion for eerA, e-ja. Of course the 
existence of the asymptotic expansion is immediate once we check that A, 2 are elliptic 
(Corollary 3.2). 

So fix a metric go with associated Levi-Civita connection V and Ricci curvature tensor 
Rij dx’ @ dxj; we raise and lower indices using go. Pick u = ~‘8; E T(TM), w = -- 
W& dx” @ dxb E f (s*T*%). Recall that we compute L, A with respect to another metric 
g. Set ~0 = JG, p = m. 

Lemma 3.2. In local coordinates we have 

(LU),b = (V&)b + (vbu)a> 

(L*oy = -2v%$, 

(z*W)’ = -2(g,,)‘” ; Vb&&, , 

(Au)” = -2((VbVbu)” + (v”vbu)b + R;ub), 

(nu)” = -2(gO)ns;(vbvbu), - 2(~O)Us;(v$VbU)b + 2(go)“;R;u/,. 

ProoJ: For completeness, we include a proof of the well known first statement [9, 1121. 
Given a vector field X, let LX denote Lie derivative. Define a derivation on tensors by Ax = 

LX - Vx; on vector fields we have AxY = -VyX. Let 4j be a family of diffeomorphisms 
of M with @O = Id, (d/dt)],,04~ = II. Since the metric is parallel, we get 

since A, vanishes on functions. The last line equals 

For the second equation, we have 

b% w) = 
s 

(((vadb + (vbUhd& @ ab, Ok% @ ad) dVO1 

M 

= 
s 

((V&h, + (VbU),)Wab dvol 

M 
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= -2 
s 

U~VaW%VOl = -2 
s 

u,V, (w;gb”) dvol 

M M 

= -2 
s 

ucgb“Vnw; dvol = -2(u, g%$,cl~;;). 

M 

Thus (L*w)” = -2Vbwa. b 

For the third equation, starting as above we get 

M 

= -2 
s 

u &%hO,bfb a ‘ dp = -2 
s 

dg” Vcwl, dp 

M M 

= -2 
s 

Us (golsr (go)“Y’V,.wu ; Wo 

M 

= u, -2(XO)rU&JC’v&,I~ 
( 1 

Thus 

(L*wy = -2(~o)tU~vGO[“. 

For the fourth equation, we compute 

(Au)” = -2Vb((Lu)“,) = -2Vb(gUc&&8 + K’(‘&dV/j) 

= -2Vb(&‘&VaUd + V,,U’) = -2(V’VbU” + @,dVbV*Ud) 

= -2(vbvbU” + $&j(V’vb + Rub)@ 

= -2(Vb&,ua + VaVbuh + R;u’). 

We leave the proof of the last statement to the reader. 

The following is a straightforward consequence of Lemma 3.2. 

Corollary 3.2. The symbol of A is given by 

c(A) = -2(po(x, C) + pl(x, <, + p2(x, <I). 

where pi (i = 0, 1, 2) is homogeneous of degree 2 - i in < and is given by 
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In particulal; A is elliptic. Thus n = & is elliptic for a close to zero. 

Note that the principal symbol of A is not scalar as for usual Laplacians. 

Proof of Proposition 3.1. By the ellipticity of A and [6, Lemma 1.7.41, Tr(e-“> has 
an asymptotic expansion Ck Aktk-(“j2), and hence so does Tr(Be-“). Moreover, the 
coefficients Ak are integrals [, ak of polynomials in the jets of the symbol of A. Since 
these polynomials are independent of coordinates, by a standard argument the elk must be 
polynomials of curvature expressions and their covariant derivatives (and constants). In 
particular, the asymptotic expansion of Tr(tr(N)eC”) is just Ck &tk-(“/2), where Bk = 
j, tr(N)ak. For the term b,,/z, a homogeneity count shows that no constant terms appear. 
Similarly, for the term A in B given before (3.16), the asymptotic expansion of Tr(Ae-‘“) 
has coefficients which are integrals of expressions involving N and curvature terms. The 
important point here is that no derivatives of N occur [6, Lemma 1.7.71. Thus if R denotes 
a generic curvature term, b,/z will also contain terms of the form tr( N) R, as well as terms 
given by contracting indices in N against indices in R and then contracting all remaining 
indices. 0 
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